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Analysis of globally connected active rotators with excitatory and inhibitory connections
using the Fokker-Planck equation
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The globally connected active rotators with excitatory and inhibitory connections are analyzed using the
nonlinear Fokker-Planck equation. The bifurcation diagram of the system is obtained numerically, and both
periodic solutions and chaotic solutions are found. By observing the interspike interval, the coefficient of
variance, and the correlation coefficient of the system, the relationship of our model to the biological data is
discussed.
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I. INTRODUCTION

Recently, in the analyses of the experimental data
tained from the brain, the pulse trains from a single neu
and the correlations in the neuronal ensembles with var
sizes have attracted considerable attention, and their role
information processing have been discussed by numerou
thors @1–5#.

In Refs.@1–4#, the apparently stochastic pulse trains fro
single neurons in the cortex are investigated, and the im
tance of the precise timing of each firing is examined. T
role of a single pulse in the brain function is still controve
sial, but some experimental and theoretical researches
shown that the timing of the firings of single neurons
reliable and it can be a candidate for the carrier of the inf
mation in the brain@6–8#.

On the other hand, the neuronal network in the vis
cortex and the hippocampus often show oscillatory beh
iors, which imply that the neurons in the network emit t
spikes synchronously~for reviews, see Ref.@5#!. It is sug-
gested that such synchronized oscillations contribute to
information processing, e.g., the bindings of the visual inf
mation in the visual cortex and the control of the synap
plasticity in the hippocampus.

These experimental researches suggest that the theor
analyses of the pulse neural networks are of importanc
understand the brain function from the neuronal level@9#.

To analyze the stochastic system governed by a Lang
equation, the Fokker-Planck equation is often used to
scribe the dynamics of the probability density of the syst
@10#, and is also applicable to the pulse neural networks
Ref. @11#, sparsely connected leaky integrate-and-fire mod
are analyzed by the Fokker-Planck equation. Under the c
dition of the sparse connection, the network is reduced
single element with an input from the network, and its se
consistent Fokker-Planck equation is numerically analyz
In Ref. @12#, a layer network of leaky integrate-and-fire mo
els is treated, and the formation of the synfire chain is a
lyzed by the Fokker-Planck equation.

In the present paper, a globally connected pulse ne
network with excitatory and inhibitory connections is an
lyzed using the Fokker-Planck equations. The neuron is m
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eled by the active rotator, and the connection imitates
synaptic connection in the brain. By virtue of the global co
necting, a set of Fokker-Planck equations with nonline
terms@13# can be introduced, thus the probability density
the whole network can be treated directly.

In Sec. II, the definition of our model is given and i
Fokker-Planck equations are introduced. In Sec. III,
Fokker-Planck equations are analyzed numerically, and
bifurcation diagram is obtained. The periodic solutions a
the chaotic solutions are found in some parameter range
Sec. IV, the chaotic solutions found in Sec. III are analyz
with the Poincare´ section and the largest Lyapunov expone
In Sec. V, the pulse trains of the model are analyzed us
the interspike interval, the coefficients of variance, and
correlation coefficients. Conclusions and discussions are
sented in the final section.

II. MODEL

Let us consider the globally connected active rotators w
excitatory elementsuE

( i ) ( i 51,2, . . . ,NE) and inhibitory ele-
mentsu I

( i ) ( i 51,2, . . . ,NI) written as

uE
~ i !̇512a sinuE

( i )1jE
( i )~ t !1

gEE

NE
(
j 51

NE

~2sinuE
( j )11/a!

2
gEI

NI
(
j 51

NI

~2sinu I
( j )11/a!, ~1!

u I
~ i !̇512a sinu I

( i )1j I
( i )~ t !1

gIE

NE
(
j 51

NE

~2sinuE
( j )11/a!

2
gII

NI
(
j 51

NI

~2sinu I
( j )11/a!, ~2!

^jE
( i )~ t !jE

( j )~ t8!&5Dd i j d~ t2t8!, ~3!

^j I
( i )~ t !j I

( j )~ t8!&5Dd i j d~ t2t8!, ~4!

^jE
( i )~ t !j I

( j )~ t8!&50, ~5!
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FIG. 1. The numerical solutions of the probability densitiesnE andnI for ~a! D50.01 andgext50.2, ~b! D50.02 andgext50.1, and~c!
D50.03 andgext50.6. ~d!, ~e!, and~f! are the corresponding raster plots of the firing times of the finite system withNE5NI51000. The
elements in the finite system are aligned so that the excitatory elements are in the range 0< i ,1000 and the inhibitory elements are i
1000< i ,2000.
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where a is a system parameter andjE
( i )(t) and j I

( i )(t) are
Gaussian white noises with the intensityD injected into the
elementsuE

( i ) and u I
( i ) , respectively. Fora.1, the active

rotator shows typical properties of an excitable syste
namely, it has a stable equilibrium and2sin@u(i)(t)#11/a
shows a pulselike wave form with an appropriate amoun
disturbance. Although the active rotators are usually c
nected diffusively@14–17#, the active rotators in our mode
are connected with the term2sin@u(i)(t)#11/a to imitate the
synaptic connections in the brain.

Let us consider the normalized number densities of
rotators having the phaseuE andu I at time t written as

nE~uE ,t ![
1

NE
(
i 51

NE

d~uE
( i )2uE!, ~6!

nI~u I ,t ![
1

NI
(
i 51

NI

d~u I
( i )2u I !, ~7!

for the excitatory elements and inhibitory elements, resp
tively. With nE(uE ,t) and nI(u I ,t), Eqs. ~1! and ~2! are
rewritten as

uE
~ i !̇512a sinuE

( i )1jE
( i )~ t !

1gEEE
0

2p

dfE~2sinfE11/a!nE~fE ,t !

2gEIE
0

2p

df I~2sinf I11/a!nI~f I ,t !, ~8!
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u I
~ i !̇512a sinu I

( i )1j I
( i )~ t !

1gIEE
0

2p

dfE~2sinfE11/a!nE~fE ,t !

2gII E
0

2p

df I~2sinf I11/a!nI~f I ,t !. ~9!

In the limit of NE ,NI→`, nE(uE ,t) and nI(u I ,t) may be
identified with the probability densities, and in this approx
mationnE(uE ,t) andnI(u I ,t) follow the nonlinear coupled
Fokker-Planck equation@13# written as

]nE

]t
52

]

]uE
~AEnE!1

D

2

]2nE

]uE
2

, ~10!

]nI

]t
52

]

]u I
~AInI !1

D

2

]2nI

]u I
2

, ~11!

AE~uE ,t !512a sinuE

1gEEE
0

2p

dfE~2sinfE11/a!nE~fE ,t !

2gEIE
0

2p

df I~2sinf I11/a!nI~f I ,t !, ~12!
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AI~u I ,t !512a sinu I

1gIEE
0

2p

dfE~2sinfE11/a!nE~fE ,t !

2gII E
0

2p

df I~2sinf I11/a!nI~f I ,t !. ~13!

In the limit of NE ,NI→`, the dynamics of the elements ca
be followed by solving Eqs.~8! and ~9! together with the
nonlinear Fokker-Planck equations~10! and ~11! for a de-
sired number of elements, and we call it an infinite syste
With the infinite system, we can investigate the intersp
interval and the coefficient of variance of each element,
the correlation between two pulse trains from two eleme
in the system.

For simplicity, the strengths of connections are assum
to begEE5gII [gint andgIE5gEI[gext , and the parameter
are fixed asa51.05 andgint51.0 in the following.

III. BIFURCATION ANALYSIS

Figures 1~a!, 1~b!, and 1~c! show the numerical solution
of Eqs. ~10! and ~11! for ~a! D50.01 andgext50.2, ~b! D
50.02 andgext50.1, and~c! D50.03 andgext50.6 with
the uniform initial conditionnE5nI51/2p, and Figs. 1~d!,
1~e!, and 1~f! show the corresponding raster plots of the fi
ing times of the finite system withNE5NI51000. The ele-
ments in the finite system are aligned so that the indice
the excitatory elements are in the range 0< i ,1000 and
those of the inhibitory elements are in 1000< i ,2000. Note
that the firing time of thei th element is defined as the tim
when 2sin@u (i)(t)#11/a exceeds 1.5. ForD50.01 andgext
50.2 @Figs. 1~a! and 1~d!#, almost all the elements fluctuat
around their equilibria and sometimes emit spikes, andnE
andnI converge to the stationary densities. ForD50.02 and
gext50.1 @Figs. 1~b! and 1~e!#, the inhibitory elements fire
randomly with low firing rates, and the excitatory elemen
fire periodically. The firings in each ensemble are asynch
nous, thus both the densities converge to the stationary
sities. ForD50.03 andgext50.6 @Figs. 1~c! and 1~f!#, al-
most all the elements oscillate correlatively, and the dens
also oscillate periodically. In the following, such firings a
called synchronous firings.

In Fig. 2, a bifurcation diagram in the (D,gext) plane is
shown. The open circles show the parameters where the
merically obtainednE andnI converge to the periodic solu
tions, and the solid and dotted lines are the Hopf bifurcat
line and the saddle-node bifurcation line, respectively. T
saddle-node bifurcation lines intersect at a cusp bifurca
point, and a saddle-node bifurcation line, a Hopf bifurcat
line and a saddle-separatrix-loop bifurcation line intersec
a Bogdanov-Takens bifurcation point@18,19#. The Hopf and
saddle-node bifurcation lines are obtained as follows. F
Eqs. ~10! and ~11! are transformed into a set of ordina
differential equationsẋ5f(x) for the spatial Fourier coeffi-
cients ofnE andnI . Next the stationary solutionx0, which
satisfiesf(x0)50, is numerically obtained, and the eigenva
ues of the Jacobian matrixDf(x0) are analyzed numerically
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In the region around (D,gext).(0.03,0.37), a periodic
solution is created by a bifurcation known as the doub
limit-cycle bifurcation@19#, namely, the simultaneous eme
gence of stable and unstable limit cycles. The double-lim
cycle bifurcation line is obtained from the long-tim
behavior of the solutions of Eqs.~10! and ~11!. Near the
double-limit-cycle bifurcation line, the bifurcations to chao
also exist, and we treat them in Sec. IV. Moreover, when
double-limit-cycle bifurcation line approaches the sadd
node bifurcation line, the bifurcations become more co
plex, namely, it seems that the chaotic orbit sudde
emerges when the system crosses the bifurcation line.
analysis of this bifurcation requires infinitely long comput
tional times and large numerical precision, thus we could
determine its mechanism.

To understand the bifurcation diagram in Fig. 2, let
define the probability fluxes@10# for the excitatory and in-
hibitory ensembles as

JE~uE ,t !5AEnE2
D

2

]nE

]uE
, ~14!

JI~u I ,t !5AInI2
D

2

]nI

]u I
, ~15!

and the fluxes atuE5u I53/2p are observed in the follow-
ing. Note that a stationary solution and a periodic solution
nE andnI are projected as a stationary point and a limit cy
onto the (JE ,JI) plane, respectively.

In Fig. 3, a bifurcation diagram in the (D,gext) plane with
schematic diagrams of the solutions in the (JE ,JI) plane is
shown. Typically, there exist stationary pointsS0 with
(JE ,JI);(0,0) andS1 with JE.JI.0, and a limit cycle

FIG. 2. A bifurcation diagram in the (D,gext) plane. The open
circles show the parameters where the numerically obtainednE and
nI converge to the periodic solutions, and the solid and dotted li
denote the Hopf bifurcation line and the saddle-node bifurcat
line, respectively. The dash-dotted lines denote the global bifu
tions of the saddle-separatrix-loop bifurcation and the double-lim
cycle bifurcation. The meanings of the abbreviations are as follo
C, cusp; BT, Bogdanov-Takens; SSL, saddle-separatrix loop; G
generalized Hopf; and DLC, double limit cycle.
6-3
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emerges whenS0 disappears by the saddle node on lim
cycle bifurcation or whenS1 loses its stability by the Hop
bifurcation. Note that the stationary densities in Figs. 1~a!
and 1~b! correspond toS0 andS1, respectively, and the tem
porally oscillating densities in Fig. 1~c! correspond to the
limit cycle. Detailed schematic bifurcation diagrams a
shown in Figs. 4~a! and 4~b!. Note that a saddle-separatrix
loop bifurcation line is added to Fig. 4~b! as a conjecture
although we could not find it. From the trajectories shown
Fig. 4~b!, it is natural to assume the existence of such
bifurcation. Moreover, as stated above, when the dou
limit-cycle bifurcation line in Fig. 4~b! approaches the
saddle-node bifurcation line, the bifurcations become m
complex. This bifurcation is no longer a double-limit-cyc
bifurcation, but some bifurcation surely exists, thus we
tend the double-limit-cycle bifurcation line with a dash
line in Fig. 4~b!. Similarly, the saddle-separatrix-loop~SSL!
bifurcation may also become complex near the saddle-n
~SN! bifurcation line, thus the SSL line is drawn with
dashed line near the SN line in Fig. 4~b!.

As shown above, the globally connected active rotat
with excitatory and inhibitory connections show the oscil
tory and synchronized behavior when the noise intensityD
and the strengthgext of connection between the ensembl
are appropriately chosen. Such a oscillatory phenomeno
also observed in the system with two sigmoidal neurons,
of which is excitatory and the other is inhibitory@19#. By
regarding the change of threshold of the sigmoidal neuro
the change of the noise intensityD, and interpreting the out
put of the sigmoidal neuron as the spatial firing rate of
neuronal ensemble, the network with two sigmoidal neur
corresponds to our model. In other words, an oscillatory p
nomenon of two sigmoidal neurons is derived from a pu
neural network with infinite numbers of excitatory and i
hibitory neurons.

However, we are concerned with the importance of
pulses in the information processing, thus we analyze

FIG. 3. A bifurcation diagram in the (D,gext) plane with sche-
matic diagrams of the solutions in the (JE ,JI) plane. The filled and
open circles in the (JE ,JI) plane denote the stable and unstab
equilibrium points, respectively, and the solid closed curve den
the stable limit cycle.
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network with the interspike interval, the coefficient of var
ance, and the correlation of the pulse trains in Sec. V.

IV. CHAOS ANALYSIS

As stated in Sec. III, the bifurcations to chaos exist n
the double-limit-cycle bifurcation line. Let us consider th
probability fluxesJE andJI at uE5u I53/2p. A time series
of JE for D50.017 andgext50.32 is shown in Fig. 5~a!, and

s

FIG. 4. Detailed schematic bifurcation diagrams around~a! the
saddle-separatrix-loop and~b! the double-limit-cycle bifurcation.
The solid and dotted lines denote the Hopf bifurcation line and
saddle-node bifurcation line, respectively. The dash-dotted lines
note the global bifurcations of the saddle-separatrix-loop bifur
tion and the double-limit-cycle bifurcation. The saddle-separat
loop bifurcation line in~b! is added as a conjecture~see text for
details!. The trajectories in the (JE ,JI) plane are also illustrated
The filled and open circles in the trajectories denote the stable
unstable equilibrium points, respectively; and the solid and das
closed curves denote the stable and unstable limit cycle, res
tively. The meanings of the abbreviations are as follows: SN, sad
node, H, Hopf; C, cusp; BT, Bogdanov-Takens; SSL, saddl
separatrix-loop; SNSL, saddle-node-separatrix loop; SNL, sad
node on limit cycle; GH, generalized Hopf; DLC, double-limi
cycle; and SH, subcritical Hopf.
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it is observed thatJE oscillates aperiodically. The trajector
of this time series in the (JE ,JI) plane is shown in Fig. 5~b!,
and it seems to form a chaotic attractor.

Let us consider the Poincare´ section at the lineJE50.3,
and observe the points when the trajectory crosses this lin
the positive direction. The position of the attractor on t
Poincare´ section againstD for gext50.32 is shown in Fig.
6~a!. The range ofD is chosen to cover the range where t
periodic solution is stable, namely, the range between
saddle-node on limit cycle bifurcation atD.0.013 and the
double-limit-cycle bifurcation atD.0.0185. The period-
doubling bifurcation and the transition to chaos are observ
Note that there exist periodic solutions whose periods
approximately multiples of the original limit cycle whe
chaos does not exist. To confirm that the observed dynam
is actually chaotic, the largest Lyapunov exponent is cal
lated with a standard technique@20#, namely, by calculating
the expansion rate of two nearby trajectories, each of wh
follows a set of ordinary differential equationsẋ5f(x) for
the spatial Fourier coefficients of Eqs.~10! and~11!. In Fig.
6~b!, the corresponding largest Lyapunov exponent is sho
It is observed that it takes positive values when chaotic
lutions exist, and takes zero when periodic solutions
stable.

V. PULSE ANALYSIS

In the previous sections, the Fokker-Planck equations~10!
and ~11! are numerically analyzed, and the dynamics of

FIG. 5. ~a! A time series ofJE and ~b! its trajectory in the
(JE ,JI) plane forD50.017 andgext50.32.
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excitatory and inhibitory ensembles is investigated. In t
section, the infinite system described by Eqs.~8!–~11! is
treated because the infinite system is useful for compa
our model with the experimental data of a single neuron.
this section, only the parameters where the system has t
varying solutions are treated.

First, let us define the interspike interval as

Tk5tk112tk , ~16!

wheretk is thekth firing of the element. WithTk , the coef-
ficient of variance of the pulse train$tk%k is defined as

CV5
A^Tk

2&2^Tk&
2

^Tk&
, ~17!

where^•& denotes the average overk. CV takes large values
for random pulse trains, and takes zero for periodic pu
trains. The mean interspike intervalT[^Tk& andCV are used
to investigate the properties of a single pulse train. In
following, the mean interspike intervals and the coefficie
of variance of the excitatory and inhibitory elements are
noted asTE , TI , CVE , andCVI , respectively.

Next, let us define the correlation coefficientC between
two pulse trains@21#. Usually, the correlation between tw
phase models is measured by the order parameter^cos(ui
2uj)&, but it takes large values even when two rotators
fluctuating around their equilibria, thus it is not appropria

FIG. 6. ~a! A bifurcation diagram forgext50.32. The points at
which the trajectory crosses the lineJE50.3 in the positive direc-
tion are plotted.~b! The corresponding largest Lyapunov expone
6-5
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FIG. 7. The dependence ofT on D for ~a! gext50.32, ~b! gext50.60, and~c! gext50.87, and the dependences ofCV andC on D for ~d!
gext50.32, ~e! gext50.60, and~f! gext50.87.
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to measure the correlation between two pulse trains. To
fine C, the time under observation is divided inton bins of
the width D, and the number of pulses in thei th bin is
denoted asXi andYi for two pulse trains. Note that the widt
D is sufficiently small, so thatXi andYi take the value 0 or
1. ThenX5(Xi andY5(Yi are the numbers of pulses, an
Z5(XiYi is the number of coincident pulses. The corre
tion coefficientC between two pulse trains is defined as

C5
Z2~XY!/n

AX~12X/n!Y~12Y/n!
P@21,1#. ~18!

Note thatC takes the value 1 for the identical pulse trai
and takes the value 0 in the largen limit for two pulse trains
without correlation. AndC takes the value21 when two
pulse trains have a negative correlation, namely,Xi1Yi51
for i 50,1,2, . . . . In thefollowing, the valueD55 is used.

Let us consider two infinite systems, each of which
governed by Eqs.~8!–~11! with statistically independen
noises. This system is composed of two excitatory and
inhibitory elements, and each element is statistically ide
cal with that in the original system with infinite numbers
elements. Thus the correlations between two elements in
infinite system reflect the correlation among the element
the original finite system. In the following, the correlatio
between two excitatory elements and between two inhibit
elements are denoted asCEE andCII , respectively. The de
pendences ofTE , TI , CVE , CVI , CEE , andCII on the noise
intensityD is shown in Fig. 7 for three values ofgext .
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e-

-

o
i-

he
in

y

For gext50.32, with the increase ofD, a periodic solution
emerges by the saddle node on limit cycle~SNL! bifurcation,
and it disappears by the double-limit-cycle bifurcation afte
series of bifurcations to chaos. For values ofD close to SNL,
each element spends a long time around its original equ
rium, thusT takes large values. And, reflecting the existen
of chaos and periodic solutions withn cycles,CV tends to
take large values, but the excitatory ensemble has high
relations.

For gext50.60, with the increase ofD, a periodic solution
emerges with SNL and disappears by the Hopf bifurcati
For values ofD close to SNL, bothT and CV take large
values, and the ensemble of the excitatory elements has
tively high correlations. For values ofD close to the Hopf
bifurcation, T, CV , and C take small values, thus all th
elements oscillate asynchronously with a high frequency

For gext50.87, with the increase ofD, a stable stationary
point disappears by the saddle-node bifurcation, then the
tem transits to the stable limit cycle@see Fig. 4~a!#, and a
limit cycle disappears by the Hopf bifurcation.T, CV , andC
take small values, for all values ofD, thus all the elements
oscillate asynchronously with a high frequency.

Note that the inhibitory elements tend to take largerT and
CV , and smallerC than the excitatory elements in all th
cases. It is because the inhibitory elements have small fi
rates and there exist periods without firings as shown
Fig. 1~f!.

Following Brunel @11#, let us classify the oscillations o
excitatory elements based on three properties, namely,
6-6



th
si
e

un
ra
R

if-
er
ia

m

e

r
sys-
are

le-

ings
er,

n
ect.
d,
ua-
the

nd
the
he-
R

dle

ed.

in

ANALYSIS OF GLOBALLY CONNECTED ACTIVE . . . PHYSICAL REVIEW E 67, 031916 ~2003!
frequency~fast or slow!, the degree of synchronization~syn-
chronous or asynchronous!, and the randomness~regular or
irregular!. For example, the abbreviation FAR denotes
fast, asynchronous, and regular firings. With such a clas
cation, the comparison between our results and the exp
mental data may become easier. The classification by Br
is based only on the degree of synchronization and the
domness, thus our FAR firings correspond to Brunel’s A
firings. Note that the bifurcation structure of our model d
fers from Brunel’s, and we consider only the paramet
which yield time-varying solutions, thus the same abbrev
tion does not necessarily imply the similar firings. To co
pare both the firings, see Ref.@11#.

FIG. 8. A classification of the firings of excitatory elements
the (D,gext) plane.
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A classification of the firings of excitatory elements in th
(D,gext) plane is shown in Fig. 8. Typically, the FAR firing
is observed near the Hopf bifurcation, and the SSI~slow,
syschronous, and irregular! firing is observed near SNL. Fo
the parameters that yield chaos, the randomness of the
tem is caused by both noise and chaos, and such firings
denoted as SSI* . The typical time series ofJE obtained from
the Fokker-Planck equation and the firing times of the e
ments in the finite system for FAR, SSI, and SSI* firings are
shown in Fig. 9. As stated above, SSI and SSI* firings have
largeCV values because there are some noise-induced fir
in the periods between two synchronous firings. Moreov
as shown in Fig. 9~e!, the intervals of synchronous firings i
SSI firings are not constant because of the finite-size eff

To analyze SSI* firings, the detection of chaos is require
but it is difficult because noise hides chaos. In such a sit
tion, the detection of the deterministic structure based on
normalized prediction error may be useful@22,23#.

VI. CONCLUSIONS AND DISCUSSIONS

The globally connected active rotators with excitatory a
inhibitory connections under noise are analyzed using
nonlinear Fokker-Planck equation, and their oscillatory p
nomena are investigated numerically. Typically, the FA
~fast, asynchronous, and regular! oscillations are observed
near the Hopf bifurcation line, and the SSI~slow, synchro-
nous, and irregular! oscillations are observed near the sad
node on limit cycle bifurcation line. Moreover, the SSI* os-
cillations where chaos and noise coexist are also observ

In the cortex, the spike trains with highCV , namely, the
FIG. 9. The typical time series of~a!, ~d! FAR, ~b!, ~e! SSI, and~c!, ~f! SSI* firings. ~a!–~c! show JE obtained from Fokker-Planck
equation, and~d!–~f! show the firing times of the finite system withNE5NI51000.
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highly random spike trains are often observed experim
tally, and their roles in information processing in the bra
are discussed@1–4#. Our results show that the spike train
with high CV do not necessarily imply that the network o
cillates asynchronously, but there is a case where the
ments in the network have some degree of correlations.
ticularly, the SSI* oscillations have highCV and high
correlations@Figs. 7~a! and 7~d!#.

On the other hand, in the visual cortex and the hippoca
pus, various kinds of synchronous oscillations are obser
and their relations to the integration of the visual informati
and the learning process of the memory are discussed@5#.
Though the mechanism of the generation of such oscillati
has not been fully understood, many researchers empha
, R

d.

p

ce

o

03191
-

le-
r-

-
d,

s
ize

the importance of inhibitory neurons based on both exp
mental and theoretical studies@24–27#. Especially, the ex-
perimental data in Ref.@27# implies that the network with
excitatory and inhibitory neurons contributes to the 40-
oscillatory activity in the hippocampal CA3 area of rats, a
such a network might relate to our model.
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