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Analysis of globally connected active rotators with excitatory and inhibitory connections
using the Fokker-Planck equation
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The globally connected active rotators with excitatory and inhibitory connections are analyzed using the
nonlinear Fokker-Planck equation. The bifurcation diagram of the system is obtained numerically, and both
periodic solutions and chaotic solutions are found. By observing the interspike interval, the coefficient of
variance, and the correlation coefficient of the system, the relationship of our model to the biological data is
discussed.
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[. INTRODUCTION eled by the active rotator, and the connection imitates the
synaptic connection in the brain. By virtue of the global con-
Recently, in the analyses of the experimental data obnecting, a set of Fokker-Planck equations with nonlinear
tained from the brain, the pulse trains from a single neurorierms[13] can be introduced, thus the probability density of
and the correlations in the neuronal ensembles with varioufie whole network can be treated directly.
sizes have attracted considerable attention, and their roles in In Sec. Il, the definition of our model is given and its
information processing have been discussed by numerous afiokker-Planck equations are introduced. In Sec. Ill, the
thors[1-5]. F_okker-_PIan(_:k equa_t|0ns are analyzed numencally_, and the
In Refs.[1—4], the apparently stochastic pulse trains fromblfurcatmr_] dlagrgm is obtamed._The periodic solutions and
; ; ; ; [t_he chaotic solutions are found in some parameter range. In

tance of the precise timing of each firing is examined. TheSec. IV, the chaotic solutions found in Sec. Ill are analyzed

role of a single pulse in the brain function is still controver- with the Pomcaresecﬂon.and the largest Lyapunov exponent.
In Sec. V, the pulse trains of the model are analyzed using

e interspike interval, the coefficients of variance, and the
correlation coefficients. Conclusions and discussions are pre-
'sented in the final section.

shown that the timing of the firings of single neurons is
reliable and it can be a candidate for the carrier of the infor
mation in the brairf6—8|.

On the other hand, the neuronal network in the visual
cortex and the hippocampus often show oscillatory behav-

iors, which imply that the neurons in the network emit the | et us consider the globally connected active rotators with
spikes synchronouslyfor reviews, see Ref5]). It is sug-  excitatory elements®) (i=1,2, ... Ng) and inhibitory ele-
gested that such synchronized oscillations contribute to thﬁ]entsgl(i) (i=1,2,...N,) written as
information processing, e.g., the bindings of the visual infor-
mation in the visual cortex and the control of the synaptic g Ng
plasticity in the hippocampus. o=1-asined+ D)+ 5 > (—sinod)+ 1/a)

These experimental researches suggest that the theoretical Ne =1
analyses of the pulse neural networks are of importance to N,
understand the brain function from the neuronal |§@g! _ 9=

To analyze the stochastic system governed by a Langevin Ny =1
equation, the Fokker-Planck equation is often used to de-
scribe the dynamics of the probability density of the system . ‘ . 01 Ne _
[10], and is also applicable to the pulse neural networks. In  6{"=1-asing"+ £V (t)+ N > (—singd+1/a)
Ref.[11], sparsely connected leaky integrate-and-fire models Ej=1
are analyzed by the Fokker-Planck equation. Under the con- N,
dition of the sparse connection, the network is reduced to a _ 9
single element with an input from the network, and its self- N =1
consistent Fokker-Planck equation is numerically analyzed.
In Ref.[12], a layer network of leaky integrate-and-fire mod- (D) edt")=Dg;a(t—t"), 3)
els is treated, and the formation of the synfire chain is ana-
lyzed by the Fokker-Planck equation. () gy 20D 47\ — Yy

In the present paper, a globally connected pulse neural (7O (1))=Da;s(t=t), @
network with excitatory and inhibitory connections is ana- . :
lyzed using the Fokker-Planck equations. The neuron is mod- (EwE))=o, 5

1. MODEL

(—sino+1/a), 1)

(—sin6+1/a), )
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FIG. 1. The numerical solutions of the probability densitigsandn, for (a) D=0.01 andge,;=0.2, (b) D=0.02 andg,,;= 0.1, and(c)
D =0.03 andge,;=0.6. (d), (e), and(f) are the corresponding raster plots of the firing times of the finite systemNgithN,=1000. The
elements in the finite system are aligned so that the excitatory elements are in the sang@dD0 and the inhibitory elements are in
1000<i<2000.

where a is a system parameter an;’(ﬂ)(t) and §|(')(t) are 0(_i):1_asin0(i)+§(i)(t)

Gaussian white noises with the intensidyinjected into the ! b

elementsd!) and 6{"), respectively. Forma>1, the active 2m _

rotator shows typical properties of an excitable system, +9|EJ dée(—singe+ la)ng(pe t)
namely, it has a stable equilibrium andsin 6(t)]+1/a 0

shows a pulselike wave form with an appropriate amount of 27

disturbance. Although the active rotators are usually con- *gnf dé(—sing,+1/a)n (¢ ,t). 9
nected diffusively{14—-17, the active rotators in our model 0

are connected with the termsin 67(t)]+1/a to imitate the

synaptic connections in the brain. In the limit of Ng,N;—», ng(6g,t) andn,(6,,t) may be
Let us consider the normalized number densities of thedentified with the probability densities, and in this approxi-
rotators having the phagg and g, at timet written as mationng(6g,t) andn, (6, ,t) follow the nonlinear coupled
NE Fokker-Planck equatiofiL3] written as
1 :
Ne(bg, )=~ 2, (68— 6e), 6)
Ne =1 2
ang d A N D dng 10
1N _ g &GE( eNE) 2 80%1 (10
(6 D= 2 860 -6), (7)
N, =1
for the excitatory elements and inhibitory elements, respec- an _ i(A n)+ D @ (11)
tively. With ng(6g,t) and n,(6,,t), Egs. (1) and (2) are ot g6, "2 692
rewritten as
00 =1—asine® + (1) Ag(g,t)=1—asinbe
27 2
+gEEfO dée(—singe+1/a)ne(de,t) +0ee . dée(—singe+1l/a)ng(de,t)
2 . 2m .
*gElfo de(—sing,+1/a)n(¢ 1), (8) _QEJO de(—sing,+1/a)n(¢ 1), (12
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A6, ,t)=1—asing, 8ext! 8int
o 1.2
TOie o doe(—singe+ l/a)neg(de,t) .l
2m . 0.8
=0 . d¢i(—sing,+1la)n (¢, ,t). (13)
06 |
In the limit of Ng,N,— o, the dynamics of the elements can 04
be followed by solving Eqs(8) and (9) together with the :
nonlinear Fokker-Planck equatiori$0) and (11) for a de- 02 | .
sired number of elements, and we call it an infinite system. j chaotic
With the infinite system, we can investigate the interspike 0 -
interval and the coefficient of variance of each element, and 0.005 0.01 0.1 0.2
the correlation between two pulse trains from two elements D

in the system.

For simplicity, the strengths of connections are assumed. 'I:'G- ﬁ Atl:]ifurcation tdiagrarr:w i”ttr:‘ec(’gext)_ plﬁne.b-trhe OpE”
t0 begee=0, =0, andgc = Ge =0, and the parameters Circles show the parameters where the numerically obtaigeah
are fi?(g(Ej ag'i'_ 19'8% andggl-E _glE'O i?]etxﬁe following n, converge to the periodic solutions, and the solid and dotted lines
-+ int— +- :

denote the Hopf bifurcation line and the saddle-node bifurcation
line, respectively. The dash-dotted lines denote the global bifurca-
1. BIFURCATION ANALYSIS tions of the saddle-separatrix-loop bifurcation and the double-limit-
cycle bifurcation. The meanings of the abbreviations are as follows:
C, cusp; BT, Bogdanov-Takens; SSL, saddle-separatrix loop; GH,
generalized Hopf; and DLC, double limit cycle.

Figures 1a), 1(b), and Xc) show the numerical solutions
of Egs.(10) and (11) for (@) D=0.01 andge,=0.2, (b) D
=0.02 andg.,;=0.1, and(c) D=0.03 andgey=0.6 with
the uniform initial conditionng=n,=1/27, and Figs. 1d),
1(e), and if) show the corresponding raster plots of the fir-
ing times of the finite system witNz=N,=1000. The ele- "
ments in the finite system are aligned so that the indices oé
the excitatory elements are in the rangesi3<1000 and
those of the inhibitory elements are in 1690<2000. Note
that the firing time of theéth element is defined as the time
when —sinf 8(t)]+1/a exceeds 1.5. Fob=0.01 andgey;
=0.2[Figs. Xa and Xd)], almost all the elements fluctuate
around their equilibria and sometimes emit spikes, apd
andn, converge to the stationary densities. B+ 0.02 and

In the region around ¥,gey)=(0.03,0.37), a periodic
solution is created by a bifurcation known as the double-
mit-cycle bifurcation[19], namely, the simultaneous emer-
ence of stable and unstable limit cycles. The double-limit-
cycle bifurcation line is obtained from the long-time
behavior of the solutions of Eq$10) and (11). Near the
double-limit-cycle bifurcation line, the bifurcations to chaos
also exist, and we treat them in Sec. IV. Moreover, when the
double-limit-cycle bifurcation line approaches the saddle-
node bifurcation line, the bifurcations become more com-
) o . plex, namely, it seems that the chaotic orbit suddenly
Gexe=0.1 [Figs. Ib) and Xe)], the inhibitory elements fire o orpes when the system crosses the bifurcation line. The
randomly with low firing rates, and the excitatory elementsanalysis of this bifurcation requires infinitely long computa-

fire periodically. The firings in each ensemble are asynchrog,,a| times and large numerical precision, thus we could not
nous, thus both the densities converge to the stationary defutermine its mechanism

sities. ForD =0.03 andge,=0.6 [Figs. 1c) and 1f)], al- To understand the bifurcation diagram in Fig. 2, let us

most all the elements oscillate correlatively, and the densitie§eafine the probability fluxef10] for the excitatory and in-
also oscillate periodically. In the following, such firings are hibitory ensembles as

called synchronous firings.

In Fig. 2, a bifurcation diagram in the)(,g.,) plane is D on
shown. The open circles show the parameters where the nu- Je(0g,t)=Agng— > —=, (14)
merically obtainechg andn, converge to the periodic solu- d0e
tions, and the solid and dotted lines are the Hopf bifurcation 5
line and the saddle-node bifurcation line, respectively. Two an,
o ot 306, =An - (15

saddle-node bifurcation lines intersect at a cusp bifurcation 296,
point, and a saddle-node bifurcation line, a Hopf bifurcation

line and a saddle-separatrix-loop bifurcation line intersect ahnd the fluxes atl= 6, =3/2m are observed in the follow-

a Bogdanov-Takens bifurcation poiit8,19. The Hopf and ing. Note that a stationary solution and a periodic solution of
saddle-node bifurcation lines are obtained as follows. FirStnE andnl are projected as a Stationary point and a limit Cyc|e
Egs. (10) and (11) are transformed into a set of ordinary onto the (¢,J;) plane, respectively.

differential equationsc="f(x) for the spatial Fourier coeffi- In Fig. 3, a bifurcation diagram in thé,g.,y plane with
cients ofng andn,. Next the stationary solutior,, which ~ schematic diagrams of the solutions in thi (J;) plane is
satisfies(xg) =0, is numerically obtained, and the eigenval- shown. Typically, there exist stationary point, with
ues of the Jacobian matrlf(x,) are analyzed numerically. (Jg,J,)~(0,0) andS; with Jg>J,>0, and a limit cycle
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FIG. 3. A bifurcation diagram in thel{,g.y) plane with sche-
matic diagrams of the solutions in thég,J,) plane. The filled and
open circles in the Jg,J;) plane denote the stable and unstable (b)
equilibrium points, respectively, and the solid closed curve denotes
the stable limit cycle. ] :
. _ g7 @ ()
emerges wherg, disappears by the saddle node on limit '
cycle bifurcation or whers; loses its stability by the Hopf &> H &> @-@-
bifurcation. Note that the stationary densities in Fig&) 1 : @ 7
and Xb) correspond t&s, andS;, respectively, and the tem- 8 ﬂi-} @ND @5
porally oscillating densities in Fig.(& correspond to the * w0 P
limit cycle. Detailed schematic bifurcation diagrams are e N SEEE g 6
shown in Figs. 49) and 4b). Note that a saddle-separatrix- . :
loop bifurcation line is added to Fig.(d) as a conjecture, | !
although we could not find it. From the trajectories shown in i -

Fig. 4(b), it is natural to assume the existence of such a
bifurcation. Moreover, as stated above, when the double- D
limit-cycle bifurcation line in Fig. 4b) approaches the . —_ i .
saddle-node bifurcation line, the bifurcations become more d';'fé;tp:g?;fﬁ);;h:rﬁ;t'iht:f‘éfsglzr_'li?;iag;‘é?: zirfc:fg;?cfn

complex. This bifurcation is no longer a double-limit-cycle The solid and dotted lines denote the Hopf bifurcation line and the

bifurcation, but some bifurcation surely exists, thus we ex- . o . ;
tend the double-limit-cycle bifurcation line with a dashed saddle-node bifurcation line, respectively. The dash-dotted lines de

A I~ . note the global bifurcations of the saddle-separatrix-loop bifurca-
l'r,]e in F'g' 4b). Similarly, the saddle-separatrix-lodSSL) tion and t?]e double-limit-cycle bifurcation. ThF:a saddle-sgparatrix-
blfurcaltlon m,ay a!so become comple>_< negr the Saddl_e'nOdlgop bifurcation line in(b) is added as a conjectufsee text for
(SN) bifurcation line, thus the SSL line is drawn with a getailg. The trajectories in theJe,J;) plane are also illustrated.
dashed line near the SN line in Figlb4 The filled and open circles in the trajectories denote the stable and
As shown above, the globally connected active rotatorginstable equilibrium points, respectively; and the solid and dashed
with excitatory and inhibitory connections show the oscilla-closed curves denote the stable and unstable limit cycle, respec-
tory and synchronized behavior when the noise interiBity tively. The meanings of the abbreviations are as follows: SN, saddle
and the strengtly.,, of connection between the ensemblesnode, H, Hopf; C, cusp; BT, Bogdanov-Takens; SSL, saddle-
are appropriately chosen. Such a oscillatory phenomenon ieparatrix-loop; SNSL, saddle-node-separatrix loop; SNL, saddle
also observed in the system with two sigmoidal neurons, oneode on limit cycle; GH, generalized Hopf; DLC, double-limit-
of which is excitatory and the other is inhibitofit9]. By  cycle; and SH, subcritical Hopf.
regarding the change of threshold of the sigmoidal neuron as
the change of the noise intensiy and interpreting the out- network with the interspike interval, the coefficient of vari-
put of the sigmoidal neuron as the spatial firing rate of theance, and the correlation of the pulse trains in Sec. V.
neuronal ensemble, the network with two sigmoidal neurons
corresponds to our model. In other words, an oscillatory phe- IV. CHAOS ANALYSIS
nomenon of two sigmoidal neurons is derived from a pulse
neural network with infinite numbers of excitatory and in-  As stated in Sec. Ill, the bifurcations to chaos exist near
hibitory neurons. the double-limit-cycle bifurcation line. Let us consider the
However, we are concerned with the importance of theprobability fluxesJg andJ, at 6= 6,=3/27. A time series
pulses in the information processing, thus we analyze thef J; for D=0.017 andy.,= 0.32 is shown in Fig. &), and
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FIG. 5. (a A time series ofJe and (b) its trajectory in the tion are plotted(b) The corresponding largest Lyapunov exponent.

(Je,J;) plane forD=0.017 andge,=0.32.

it is observed thafg oscillates aperiodically. The trajectory €xcitatory and inhibitory ensembles is investigated. In this

of this time series in theJg ,J;) plane is shown in Fig.®),  section, the infinite system described by E(®—(11) is

and it seems to form a chaotic attractor. treated because the infinite system is useful for comparing
Let us consider the Poincasection at the linddg=0.3,  our model with the experimental data of a single neuron. In

and observe the points when the trajectory crosses this line ithis section, only the parameters where the system has time-

the positive direction. The position of the attractor on thevarying solutions are treated.

Poincaresection againsb for g..=0.32 is shown in Fig. First, let us define the interspike interval as
6(a). The range oD is chosen to cover the range where the
periodic solution is stable, namely, the range between the Te=tkr1—tk, (16)

saddle-node on limit cycle bifurcation 8=0.013 and the ) o )
double-limit-cycle bifurcation atD=0.0185. The period- Wheret, is thekth firing of the element. Wit , the coef-
doubling bifurcation and the transition to chaos are observedicient of variance of the pulse traft}y is defined as
Note that there exist periodic solutions whose periods are >

approximately multiples of the original limit cycle when V(T =(Tw)?

chaos does not exist. To confirm that the observed dynamics (T '

is actually chaotic, the largest Lyapunov exponent is calcu-

lated with a standard techniq{i20], namely, by calculating where(-) denotes the average overC, takes large values
the expansion rate of two nearby trajectories, each of whickor random pulse trains, and takes zero for periodic pulse
follows a set of ordinary differential equatioms=f(x) for  trains. The mean interspike interve&=(T,) andC, are used
the spatial Fourier coefficients of Eq40) and(11). In Fig.  to investigate the properties of a single pulse train. In the
6(b), the corresponding largest Lyapunov exponent is showrfollowing, the mean interspike intervals and the coefficients
It is observed that it takes positive values when chaotic soof variance of the excitatory and inhibitory elements are de-
lutions exist, and takes zero when periodic solutions argioted asT¢, T,, Cyg, andCy,, respectively.

stable. Next, let us define the correlation coefficieBtbetween
two pulse traing21]. Usually, the correlation between two
phase models is measured by the order paramiems(@

In the previous sections, the Fokker-Planck equati@0s  —#6,)), but it takes large values even when two rotators are
and (11) are numerically analyzed, and the dynamics of thefluctuating around their equilibria, thus it is not appropriate

Cv= (17)

V. PULSE ANALYSIS
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FIG. 7. The dependence &fon D for (a) gey=0.32, (b) gex;=0.60, andc) g.,=0.87, and the dependences®f andC on D for (d)
Oexi=0.32, (€) gex=0.60, and(f) gey;=0.87.

to measure the correlation between two pulse trains. To de- Forg.,=0.32, with the increase @, a periodic solution
fine C, the time under observation is divided intobins of  emerges by the saddle node on limit cy(3\L) bifurcation,
the width A, and the number of pulses in théh bin is  and it disappears by the double-limit-cycle bifurcation after a
denoted a¥X; andY; for two pulse trains. Note that the width series of bifurcations to chaos. For valueotlose to SNL,
A is sufficiently small, so thaX; andY; take the value O or each element spends a long time around its original equilib-
1. ThenX=Z%X; andY=2Y; are the numbers of pulses, and rjum, thusT takes large values. And, reflecting the existence
Z=3XX;Y; is the number of coincident pulses. The correla-of chaos and periodic solutions withcycles, C,, tends to
tion coefficientC between two pulse trains is defined as  take large values, but the excitatory ensemble has high cor-
relations.
co Z—(XY)/n I 18) For gey=0.60, with the increase d, a periodic solution
YX(1=X/n)Y(1=Y/n) = emerges with SNL and disappears by the Hopf bifurcation.
For values ofD close to SNL, bothT and C, take large
Note thatC takes the value 1 for the identical pulse trainsvalues, and the ensemble of the excitatory elements has rela-
and takes the value 0 in the largdimit for two pulse trains tively high correlations. For values @ close to the Hopf
without correlation. AndC takes the value-1 when two  bifurcation, T, Cy,, and C take small values, thus all the
pulse trains have a negative correlation, nam¥|y; Y,=1 elements oscillate asynchronously with a high frequency.
fori=0,1,2 ... . In thefollowing, the valueA=5 is used. For gey;=0.87, with the increase @, a stable stationary
Let us consider two infinite systems, each of which ispoint disappears by the saddle-node bifurcation, then the sys-
governed by Eqgs(8)—(11) with statistically independent tem transits to the stable limit cyclsee Fig. 4a)], and a
noises. This system is composed of two excitatory and twdimit cycle disappears by the Hopf bifurcatioh, C,,, andC
inhibitory elements, and each element is statistically identitake small values, for all values &f, thus all the elements
cal with that in the original system with infinite numbers of oscillate asynchronously with a high frequency.
elements. Thus the correlations between two elements in the Note that the inhibitory elements tend to take lar§emd
infinite system reflect the correlation among the elements irC,,, and smallerC than the excitatory elements in all the
the original finite system. In the following, the correlations cases. It is because the inhibitory elements have small firing
between two excitatory elements and between two inhibitoryates and there exist periods without firings as shown in
elements are denoted &g andC,,, respectively. The de- Fig. 1(f).
pendences of g, T, Cyg, Cy,, Cge, andC;, on the noise Following Brunel[11], let us classify the oscillations of
intensity D is shown in Fig. 7 for three values gt;. excitatory elements based on three properties, namely, the
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8 oxt! 8 int A classification of the firings of excitatory elements in the
12 (D,0geyy) plane is shown in Fig. 8. Typically, the FAR firing
is observed near the Hopf bifurcation, and the $8ow,
1t syschronous, and irregujdiiring is observed near SNL. For
the parameters that yield chaos, the randomness of the sys-
08 tem is caused by both noise and chaos, and such firings are
06 | denoted as S3I The typical time series afz obtained from
' the Fokker-Planck equation and the firing times of the ele-
0.4 ments in the finite system for FAR, SSI, and S8fings are
shown in Fig. 9. As stated above, SSI and*Sfiings have
o2} largeC,, values because there are some noise-induced firings
in the periods between two synchronous firings. Moreover,
0 as shown in Fig. @), the intervals of synchronous firings in
0.005 0.01 0.1 0.2

D

SSI firings are not constant because of the finite-size effect.
To analyze SSifirings, the detection of chaos is required,

FIG. 8. A classification of the firings of excitatory elements in but it is difficult because noise hides chaos. In such a situa-

the (D,geyy) plane.

tion, the detection of the deterministic structure based on the
normalized prediction error may be usefaR,23.

frequency(fast or slow, the degree of synchronizatigsyn-
chronous or asynchronoysind the randomnegsegular or
irregulan. For example, the abbreviation FAR denotes the
fast, asynchronous, and regular firings. With such a classifi- The globally connected active rotators with excitatory and
cation, the comparison between our results and the experinhibitory connections under noise are analyzed using the
mental data may become easier. The classification by Brunelonlinear Fokker-Planck equation, and their oscillatory phe-
is based only on the degree of synchronization and the ramomena are investigated numerically. Typically, the FAR

VI. CONCLUSIONS AND DISCUSSIONS

domness, thus our FAR firings correspond to Brunel's AR(fast, asynchronous, and regylarscillations are observed
firings. Note that the bifurcation structure of our model dif- near the Hopf bifurcation line, and the S&low, synchro-
fers from Brunel’s, and we consider only the parametersious, and irregularoscillations are observed near the saddle
which yield time-varying solutions, thus the same abbrevianode on limit cycle bifurcation line. Moreover, the $Sis-
tion does not necessarily imply the similar firings. To com-cillations where chaos and noise coexist are also observed.

pare both the firings, see Ré¢fl1].

(@  D=0.07, geu=0.6

(b) D=0015, geuw=0.6

In the cortex, the spike trains with higb,,, namely, the
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FIG. 9. The typical time series dB), (d) FAR, (b), (e) SSI, and(c), (f) SSF firings. (a)—(c) show Jg obtained from Fokker-Planck
equation, andd)—(f) show the firing times of the finite system wibz=N,=1000.
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highly random spike trains are often observed experimenthe importance of inhibitory neurons based on both experi-
tally, and their roles in information processing in the brainmental and theoretical studi¢84—27. Especially, the ex-
are discussefil—4]. Our results show that the spike trains perimental data in Ref.27] implies that the network with
with high C,, do not necessarily imply that the network os- excitatory and inhibitory neurons contributes to the 40-Hz
cillates asynchronously, but there is a case where the el@scillatory activity in the hippocampal CA3 area of rats, and
ments in the network have some degree of correlations. Pasuch a network might relate to our model.

ticularly, the SS! oscillations have highC, and high
correlationg Figs. 1a) and 7d)].

On the other hand, in the visual cortex and the hippocam-
pus, various kinds of synchronous oscillations are observed, T.K. is grateful to Professor Takehiko Horita for his care-
and their relations to the integration of the visual informationful reading of the manuscript. This research was partially
and the learning process of the memory are discugSed supported by a Grant-in-Aid for Encouragement of Young
Though the mechanism of the generation of such oscillationScientists(B) (No. 14780260 from the Ministry of Educa-
has not been fully understood, many researchers emphasitien, Culture, Sports, Science, and Technology, Japan.
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